Telomere dysfunction in human keratinocytes elicits senescence and a novel transcription profile.

2008 
Abstract The uncapping of telomeres has been shown to precipitate senescence in normal human fibroblasts and apoptosis in lymphocytes and p53-competent cancer cell lines. However, the effects of telomere uncapping on normal epithelial cells have not previously been examined. We have used the well characterised telomere repeat binding factor 2 (TRF2) dominant-negative mutant, TRF2 ΔBΔM , to deplete Normal Human Epidermal Keratinocytes (NHEK) telomeres of TRF2. We observed only a two fold increase in both phosphorylation of p53 at serine 15 and 53BP1 DNA damage foci and no detectable increase in p21 WAF . Despite the weak DNA damage response, the keratinocytes growth arrest, demonstrate reduced colony formation and senescence. The small, abortive senescent colonies did not incorporate Brd-U within 48 h and expressed senescence-associated beta galactosidase (SA-β-gal). Transcriptional profiling of TRF2-depleted keratinocytes showed a reproducible up-regulation of several genes. These included histones, genes associated with DNA damage and keratinocyte terminal differentiation. Several of the same genes were also shown to be up-regulated when keratinocytes undergo natural telomere-mediated senescence and down-regulated by ectopic telomerase expression. This study has thus revealed highly sensitive and specific candidate indicators of telomere dysfunction that may find use in identifying telomere-mediated keratinocyte senescence in ageing, cancer and other diseases.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    70
    References
    12
    Citations
    NaN
    KQI
    []