Molecular mass growth through ring expansion in polycyclic aromatic hydrocarbons via radical-radical reactions.

2019 
Polycyclic aromatic hydrocarbons (PAHs) represent key molecular building blocks leading to carbonaceous nanoparticles identified in combustion systems and extraterrestrial environments. However, the understanding of their formation and growth in these high temperature environments has remained elusive. We present a mechanism through laboratory experiments and computations revealing how the prototype PAH—naphthalene—can be efficiently formed via a rapid 1-indenyl radical—methyl radical reaction. This versatile route converts five- to six-membered rings and provides a detailed view of high temperature mass growth processes that can eventually lead to graphene-type PAHs and two-dimensional nanostructures providing a radical new view about the transformations of carbon in our universe. Polycyclic aromatic hydrocarbons (PAHs) represent key molecular building blocks in extraterrestrial environments but the understanding of their formation and growth in this environment has remained elusive. Here the authors reveal how naphthalene can be efficiently formed via rapid radical–radical reactions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    31
    Citations
    NaN
    KQI
    []