STRUCTURE-LEARNING OF CAUSAL BAYESIAN NETWORKS BASED ON ADJACENT NODES

2013 
Due to the infeasibility of randomized controlled experiments, the existence of unobserved variables and the fact that equivalent direct acyclic graphs obtained generally can not be distinguished, it is difficult to learn the true causal relations of original graph. This paper presents an algorithm called BSPC based on adjacent nodes to learn the structure of Causal Bayesian Networks with unobserved variables by using observational data. It does not have to adjust the structure as the existing algorithms FCI and MBCS*, while it can guarantee to obtain the true adjacent nodes. More important is that algorithm BSPC reduces computational complexity and improves reliability of conditional independence tests. Theoretical results show that the new algorithm is correct. In addition, the advantages of BSPC in terms of the number of conditional independence tests and the number of orientation errors are illustrated with simulation experiments from which we can see that it is more suitable in order to learn the structure of Causal Bayesian Networks with latent variables. Moreover a better latent structure representation is returned.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    3
    Citations
    NaN
    KQI
    []