Beam-envelope calculations of space-charge loaded beams in MeV dc ion-implantation facilities

1989 
Abstract MeV dc ion accelerators are being developed that can deliver a beam current up to several hundred micro-amperes. At the low-energy part of the accelerator, the beam transport is space-charge dominated rather than emittance dominated. A system of differential equations has been derived, based on the Kapchinski-Vladimirski equations, which describe the envelope of a space-charge loaded ion beam, taking a longitudinal electrical field in an accelerating tube into account. The equations have been used to design the accelerator of a high-current 1 MV heavy-ion implantation facility. Furthermore, the design of a 2 MV accelerator is presented, which is used for analyzing techniques such as RBS and PIXE. Both facilities are based on single-ended Van de Graaff accelerators.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    0
    Citations
    NaN
    KQI
    []