Effect of elastomeric monomers as polymeric matrix of experimental adhesive systems: degree of conversion and bond strength characterization

2014 
The aim of this study was to characterize the degree of conversion and the bond strength of experimental adhesive systems formulated with elastomeric monomers (Exothanes). Two-step self-etch adhesive systems were formulated, where the primer was constituted by HEMA, HEMA-P, water and ethanol, and the resin bonds were prepared mixing one type of Exothane (8, 9, 10, 24, or 32) (75 wt%) with TEGDMA (25 wt%). CQ, EDAB, and DPI were added as photo-initiation system. UDMA was used as control, so six different resin bonds were formulated at all. The adhesive system Clearfil SE Bond (CLSE) was used as a commercial control. The degree of conversion (DC) of each resin bond was evaluated in infrared spectroscopy (RT-FTIR, Shimadzu Prestige-21) using a diamond crystal (n = 3). The microshear bond strength (μSBS) test was performed using a universal testing machine (EMIC DL-500). While the DC data was analyzed by one-way ANOVA and Tukey (p 0.05). Low μSBS results were seen for the Exothane-based materials. CLSE demonstrated significantly higher bond strength than the other materials (p < 0.001). UDMA has also presented low μSBS to the dentin substrate. It can be concluded that the Exothanes evaluated demonstrated satisfactory degree of conversion, with some of them reaching almost full conversion of monomers in polymer. However, considering the formulations investigated, they were not good bonding agents. So, they were not reliable options for composing the polymeric matrix of dental adhesive materials.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    5
    Citations
    NaN
    KQI
    []