The transport mechanism of integrin αvβ3 receptor targeting nanoparticles in Caco-2 cells.

2016 
As for the existence of epithelium barrier, accelerating the transport remains huge challenges for orally delivered protein and peptide drugs into blood circulation. Modifying nanopaticles (NPs) with targeting peptides can enhance the intestinal absorption of loaded macromolecular drugs. However, the transport process, which mainly means how the NPs pass through the apical membrane and the basolateral side and then enter into blood circulation, is needed comprehensive investigation. In this study, we systemically studied the transport mechanisms in Caco-2 cell model of trimethyl chitosan based NPs (TMC NPs) before and after modification of FQS, an integrin αvβ3 receptor targeting peptide. Our results showed FQS peptide mediated multiple endocytosis pathways and could activate integrin αvβ3 receptor by interacting with FAK and Src-family kinases to induce receptor-mediated endocytosis of the NPs. Then, both endocytosed NPs could transport from early endosome to lysososmes via late endosomes/lysosome pathway, as well as to recycling endosomes and Golgi apparatus through early endosome/recycling endosomes and Golgi apparatus/recycling endosomes/plasma membrane pathways, respectively. After FQS peptide modification, the endocytosis subpathways of NPs have been changed, and more pathways are involved in exocytosis process for FQS-modified NPs compared with non-modified NPs. Our study indicated the ligand modification could enhance the uptake and transport by altering some pathways in whole transport process of NPs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    61
    References
    31
    Citations
    NaN
    KQI
    []