Dynamic Flow Migration for Embedded Services in SDN/NFV-Enabled 5G Core Networks

2020 
Software defined networking (SDN) and network function virtualization (NFV) are key enabling technologies in fifth generation (5G) communication networks for embedding service-level customized network slices in a network infrastructure, based on statistical resource demands to satisfy long-term quality of service (QoS) requirements. However, traffic loads in different slices are subject to changes over time, resulting in challenges for consistent QoS provisioning. In this paper, a dynamic flow migration problem for embedded services is studied, to meet end-to-end (E2E) delay requirements with time-varying traffic. A multi-objective mixed integer optimization problem is formulated, addressing the trade-off between load balancing and reconfiguration overhead. The problem is transformed to a tractable mixed integer quadratically constrained programming (MIQCP) problem. It is proved that there is no optimality gap between the two problems; hence, we can obtain the optimum of the original problem by solving the MIQCP problem with some post-processing. To reduce time complexity, a heuristic algorithm based on redistribution of hop delay bounds is proposed to find an efficient solution. Numerical results are presented to demonstrate the aforementioned trade-off, the benefit from flow migration in terms of E2E delay guarantee, as well as the effectiveness and efficiency of the heuristic solution.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    27
    Citations
    NaN
    KQI
    []