Combining Biological and Chemical Screenings to Assess Cytotoxicity of Emerging Contaminants in Discharges into Surface Water

2016 
Combining bioassays and analytical chemistry screenings is a powerful approach to assess emerging organic micropollutants which are the main contributors to toxic potentials in complex mixtures of water matrices. The aim of this study was to assess the cytotoxic effect of the occurrence of emerging organic micropollutants discharged into river water through industrial wastewater and treated effluents. The cytotoxic effects of surface water, treated effluents, and industrial wastewater were assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Then, organic micropollutants of various chemical groups were identified using a detailed non-target screening based on gas chromatography coupled with a mass spectrometry detector (GC/MS). A significant cytotoxic effect on human intestinal epithelial Caco-2 cells was observed for all the samples. Caco-2 cell viability decreased by 17.99, 33.77, and 24.54 % for surface water, treated wastewater, and industrial water, respectively. The organic chemical compounds responsible for this toxic potential were identified using non-target chemical screening. Statistical correlation between cytotoxicity and the presence of emerging contaminants revealed that the cytotoxic effect was mainly due (r ≥ 0.42) to the occurrence of cyclopentasiloxane, decamethyl and cyclohexasiloxane, dodecamethyl, d-limonene, and ergoline-8-methanol, 8,9-didehydro-6-methyl while cytotoxicity was highly negatively correlated (r ≤ −0.42) to 2-ethylhexyl salicylate, 3-isopropoxy-1,1,1,7,7,7-hexamethyl-3,5,5-tris(trimethyl siloxy)tetrasiloxane, 6-acetyl-1,1,2,4,4,7-hexamethyltetralin, and (3-aminopropyltriethoxysilane. Seventy-six other compounds detected by GC/MS showed no correlation to cytotoxicity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    2
    Citations
    NaN
    KQI
    []