Using bidirectional chemical exchange for improved hyperpolarized [ 13 C]bicarbonate pH imaging

2019 
PURPOSE: Rapid chemical exchange can affect SNR and pH measurement accuracy for hyperpolarized pH imaging with [13 C]bicarbonate. The purpose of this work was to investigate chemical exchange effects on hyperpolarized imaging sequences to identify optimal sequence parameters for high SNR and pH accuracy. METHODS: Simulations were performed under varying rates of bicarbonate-CO2 chemical exchange to analyze exchange effects on pH quantification accuracy and SNR under different sampling schemes. Four pulse sequences, including 1 new technique, a multiple-excitation 2D EPI (multi-EPI) sequence, were compared in phantoms using hyperpolarized [13 C]bicarbonate, varying parameters such as tip angles, repetition time, order of metabolite excitation, and refocusing pulse design. In vivo hyperpolarized bicarbonate-CO2 exchange measurements were made in transgenic murine prostate tumors to select in vivo imaging parameters. RESULTS: Modeling of bicarbonate-CO2 exchange identified a multiple-excitation scheme for increasing CO2 SNR by up to a factor of 2.7. When implemented in phantom imaging experiments, these sampling schemes were confirmed to yield high pH accuracy and SNR gains. Based on measured bicarbonate-CO2 exchange in vivo, a 47% CO2 SNR gain is predicted. CONCLUSION: The novel multi-EPI pulse sequence can boost CO2 imaging signal in hyperpolarized 13 C bicarbonate imaging while introducing minimal pH bias, helping to surmount a major hurdle in hyperpolarized pH imaging.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    5
    Citations
    NaN
    KQI
    []