Electric Transport Properties of Surface-Anchored Metal–Organic Frameworks and the Effect of Ferrocene Loading

2015 
Understanding of the electric transport through surface-anchored metal–organic frameworks (SURMOFs) is important both from a fundamental perspective as well as with regards to possible future applications in electronic devices. To address this mostly unexplored subject, we integrated a series of representative SURMOF thin films, formed by copper nodes and trimesic acid and known as HKUST-1, in a mercury-drop-based tunneling junction. Although the transport properties of these SURMOFs are analogous to those of hybrid metal–organic molecular wires, manifested by a very low value of the tunneling decay constant (β ≈ 0.006 A–1), they are at the same time found to be consistent with a linear increase of resistance with film thickness. Upon loading of SURMOF pores with ferrocene (Fc), a noticeable increase in transport current was observed. A transport model and ab initio electronic structure calculations were used to reveal a hopping transport mechanism and to relate the changes upon Fc loading to those of the...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    66
    Citations
    NaN
    KQI
    []