Characterizing Metabolic Inhibition Using Electrochemical Enzyme-DNA Biosensors

2009 
Studies of metabolic enzyme inhibition are necessary in drug development and toxicity investigations as potential tools to limit or prevent appearance of deleterious metabolites formed, for example, by cytochrome (cyt) P450 enzymes. In this paper, we evaluate the use of enzyme/DNA toxicity biosensors as tools to investigate enzyme inhibition. We have examined DNA damage due to cyt P450cam metabolism of styrene using DNA/enzyme films on pyrolytic graphite (PG) electrodes monitored via Ru(bpy)32+-mediated DNA oxidation. Styrene metabolism initiated by hydrogen peroxide was evaluated with and without the inhibitors, imidazole, imidazole-4-acetic acid, and sulconazole (in micromolar range) to monitor DNA damage inhibition. The initial rates of DNA damage decreased with increased inhibitor concentrations. Linear and nonlinear fits of Michaelis−Menten inhibition models were used to determine apparent inhibition constants (KI*) for the inhibitors. Elucidation of the best fitting inhibition model was achieved by ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    14
    Citations
    NaN
    KQI
    []