Investigation into the Internal Electric-Field Strength in the Active Region of InGaN/GaN-Based LED Structures with Various Numbers of Quantum Wells by Electrotransmission Spectroscopy
2020
The internal electric fields of InGaN/GaN-based green-emission LED heterostructures with various numbers of quantum wells in the active region are investigated by electrotransmission spectroscopy. The frequencies of the observed spectral lines are attributed to possible types of interband transitions. An increase in the number of interband transitions of the “quantum well—quantum barrier” type with an increase in the number of quantum wells is found. This is explained by the nonidentical degree of segregation of In atoms in different GaN barriers layers. The strength of internal electric fields in quantum wells is calculated for various values of the bias of the p–n junction using a series of electrotransmission spectra. It is found that the strength of the internal piezoelectric field decreases from 3.20 to 2.82 MV/cm with an increase in the number of quantum wells.
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
34
References
1
Citations
NaN
KQI