A Frequency Estimation Algorithm under Local Differential Privacy

2021 
With the rapid development of 5G, the Internet of Things (IoT) and edge computing technologies dramatically improve smart industries' efficiency, such as healthcare, smart agriculture, and smart city. IoT is a data-driven system in which many smart devices generate and collect a massive amount of user privacy data, which may be used to improve users' efficiency. However, these data tend to leak personal privacy when people send it to the Internet. Differential privacy (DP) provides a method for measuring privacy protection and a more flexible privacy protection algorithm. In this paper, we study an estimation problem and propose a new frequency estimation algorithm named MFEA that redesigns the publish process. The algorithm maps a finite data set to an integer range through a hash function, then initializes the data vector according to the mapped value and adds noise through the randomized response. The frequency of all interference data is estimated with maximum likelihood. Compared with the current traditional frequency estimation, our approach achieves better algorithm complexity and error control while satisfying differential privacy protection (LDP).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    13
    References
    0
    Citations
    NaN
    KQI
    []