Molecular Dynamics Investigation of the Adhesion Mechanism Acting between Dopamine and the Surface of Dopamine-Processed Aramid Fibers

2014 
Dopamine, as a universal material for surface treatment, can effectively improve the surface performance of aramid fibers. However, directly processing the surface of aramid fibers using dopamine currently incurs a high cost. To seek dopamine substitutes, one must first explore the adhesion mechanism responsible for binding the dopamine to the surface of the fiber. In this study, we construct an all-atomic molecular dynamics model of an aramid fiber before and after surface modification using dopamine. A force field based on condensed-phase optimized molecular potentials for atomistic simulation studies (COMPASS) is used. Using it, we analyze the surface adhesion mechanism of polydopamines aggregated by 21 kinds of molecular structures typically found on the surface of aramid fibers. The results show that a clear and smooth interface is formed between the polydopamine nanofilm layer and the surface of the aramid fiber. The high atomic density of the polydopamine in the small interface region is found to b...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    35
    Citations
    NaN
    KQI
    []