Patient-derived xenografts and organoids model therapy response in prostate cancer

2020 
Therapy resistance and metastatic processes in prostate cancer (PCa) remain undefined, due to lack of experimental models that mimic different disease stages. We describe a novel androgen-dependent PCa patient-derived xenograft (PDX) model from treatment-naive, soft tissue metastasis (PNPCa). RNA and whole-exome sequencing of the PDX tissue and organoids confirmed transcriptomic and genomic similarity to primary tumor. PNPCa harbours BRCA2 and CHD1 somatic mutations, shows an SPOP-FOXA1-like transcriptomic signature and microsatellite instability, which occurs in 3% of advanced PCa and has never been modelled in vivo. Comparison of the treatment-naive PNPCa with additional metastatic PDXs (BM18, LAPC9), in a medium-throughput organoid screen of FDA-approved compounds, revealed differential drug sensitivities. Multikinase inhibitors (ponatinib, sunitinib, sorafenib) were broadly effective on all PDX- and patient-derived organoids from advanced cases with acquired resistance to standard-of-care compounds. This proof-of-principle study may provide a preclinical tool to screen drug responses to standard-of-care and newly identified, repurposed compounds.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    1
    Citations
    NaN
    KQI
    []