Low-Voltage,High-Performance Flexible Organic Field-EffectTransistors Based on Ultrathin Single-Crystal Microribbons

2019 
Organic field-effect transistors (OFETs) have acquired increasing attention because of their wide range of potential applications in electronics; nevertheless, high operating voltage and low carrier mobility are considered as major bottlenecks in their commercialization. In this work, we demonstrate low-voltage, flexible OFETs based on ultrathin single-crystal microribbons. Flexible OFETs fabricated with 2,7-dioctylbenzothieno[3,2-b]benzothiophene (C8-BTBT) based solution-processed ultrathin single-crystal microribbon as the semiconductor layer and high-k polymer, polysiloxane–poly(vinyl alcohol) composite as an insulator layer manifest a significantly low operating voltage of −4 V, and several devices showed a high mobility of >30 cm2 V–1 s–1. Besides, the carrier mobility of the fabricated devices exhibits a slight degradation in static bending condition, which can be retained by 83.3% compared with its original value under a bending radius of 9 mm. As compared to the bulk C8-BTBT single-crystal-based O...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    8
    Citations
    NaN
    KQI
    []