Coregulation of estrogen receptor by ERBB4/HER4 establishes a growth-promoting autocrine signal in breast tumor cells

2006 
Although crosstalk between cell-surface and nuclear receptor signaling pathways has been implicated in the development and progression of endocrine-regulated cancers, evidence of direct coupling of these signaling pathways has remained elusive. Here we show that estrogen promotes an association between extranuclear estrogen receptor α (ER) and the epidermal growth factor receptor (EGFR) family member ERBB4. Ectopically expressed as well as endogenous ERBB4 interacts with and potentiates ER transactivation, indicating that the ERBB4/ER interaction is functional. Estrogen induces nuclear translocation of the proteolytic processed ERBB4 intracellular domain (4ICD) and nuclear translocation of 4ICD requires functional ligand-bound ER. The nuclear ER/4ICD complex is selectively recruited to estrogen-inducible gene promoters such as progesterone receptor ( PgR ) and stromal cell–derived factor 1 ( SDF-1 ) but not to trefoil factor 1 precursor ( pS2 ). Consistent with 4ICD-selective promoter binding, suppression of ERBB4 expression by interfering RNA shows that 4ICD coactivates ER transcription at the PgR and SDF-1 but not the pS2 promoter. Significantly, ERBB4 itself is an estrogen-inducible gene and the ERBB4 promoter harbors a consensus estrogen response element (ERE) half-site with overlapping activator protein-1 elements that bind ER and 4ICD in response to estrogen. Using a cell proliferation assay and a small interfering RNA approach, we show that ERBB4 expression is required for the growth-promoting action of estrogen in the T47D breast cancer cell line. Our results indicate that ERBB4 is a unique coregulator of ER, directly coupling extranuclear and nuclear estrogen actions in breast cancer. We propose that the contribution of an autocrine ERBB4/ER signaling pathway to tumor growth and therapeutic response should be considered when managing patients with ER-positive breast cancer. (Cancer Res 2006; 66(16): 7991-8)
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    123
    Citations
    NaN
    KQI
    []