Scalable Synthesis of Honeycomblike V2O5/Carbon Nanotube Networks as Enhanced Cathodes for Lithium-Ion Batteries

2017 
A green and scalable route to form a honeycomblike macroporous network by homogeneously weaving V2O5 nanowires and carbon nanotubes (CNTs) was developed. The intertwinement between V2O5 nanowires and CNTs not only integrates nanopores into the macroporous system but also elevates the collection and transfer of charges through the conductive network. The unique combination of V2O5 nanowires and CNTs renders the composite monolith with synergic properties for substantially enhancing electrochemical kinetics of lithiation/delithiation when used as a lithium-ion battery (LIB) cathode. This work presents a useful approach for a large-scale production of cellular monoliths as high-performance LIB cathodes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    13
    Citations
    NaN
    KQI
    []