MECHANICAL STRESSES IN A LINEAR PLASTIC FGM HOLLOW AND SOLID ROTATIONAL DISK

2013 
In this paper, an analytical solution for computing the plastic & linear plastic stresses and critical angular velocity in a FGM hollow & solid rotating disk is developed. It has been assumed that the modulus of elasticity and yield strength were varying through thickness of the FGM material according to a power law relationship. The Poisson's ratio were considered constant throughout the thickness. In the analysis presented here the effect of non-homogeneity in FGM rotating disk was implemented by choosing a dimensionless parameter, named m, which could be assigned an arbitrary value affecting the stresses in the rotating disk. Distribution of stresses in radial and circumferential directions for FGM rotating disk under the influence of angular velocity were obtained. Graphs of variations of stress, critical angular velocity versus radius of the rotating disk were plotted. The direct method is used to solve the Navier equations. © 2013 IAU, Arak Branch.All rights reserved.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    1
    Citations
    NaN
    KQI
    []