Metagenomic characterization of creek sediment microbial communities from a major agricultural region in Salinas, California

2019 
Little is known about the public health risks associated with natural creek sediments that are affected by runoff and fecal pollution from agricultural and livestock practices. For instance, the persistence of foodborne pathogens originating from agricultural activities such as Shiga Toxin-producing E. coli (STEC) in such sediments remains poorly quantified. Towards closing these knowledge gaps, the water-sediment interface of two creeks in the Salinas River Valley was sampled over a nine-month period using metagenomics and traditional culture-based tests for STEC. Our results revealed that these sediment communities are extremely diverse and comparable to the functional and taxonomic diversity observed in soils. With our sequencing effort (~4 Gbp per library), we were unable to detect any pathogenic Escherichia coli in the metagenomes of 11 samples that had tested positive using culture-based methods, apparently due to relatively low pathogen abundance. Further, no significant differences were detected in the abundance of human- or cow-specific gut microbiome sequences compared to upstream, more pristine (control) sites, indicating natural dilution of anthropogenic inputs. Notably, a high baseline level of metagenomic reads encoding antibiotic resistance genes (ARGs) was found in all samples and was significantly higher compared to ARG reads in metagenomes from other environments, suggesting that these communities may be natural reservoirs of ARGs. Overall, our metagenomic results revealed that creek sediments are not a major sink for anthropogenic runoff and the public health risk associated with these sediment microbial communities may be low.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    70
    References
    1
    Citations
    NaN
    KQI
    []