Evidence that preimmunization with a heat-killed preparation of Mycobacterium vaccae reduces corticotropin-releasing hormone mRNA expression in the extended amygdala in a fear-potentiated startle paradigm
2019
Abstract Posttraumatic stress disorder (PTSD) is a trauma and stressor-related disorder that is characterized by dysregulation of glucocorticoid signaling, chronic low-grade inflammation, and impairment in the ability to extinguish learned fear. Corticotropin-releasing hormone (Crh) is a stress- and immune-responsive neuropeptide secreted from the paraventricular nucleus of the hypothalamus (PVN) to stimulate the hypothalamic-pituitary-adrenal (HPA) axis; however, extra-hypothalamic sources of Crh from the central nucleus of the amygdala (CeA) and bed nucleus of the stria terminalis (BNST) govern specific fear- and anxiety-related defensive behavioral responses. We previously reported that preimmunization with a heat-killed preparation of the immunoregulatory environmental bacterium Mycobacterium vaccae NCTC 11659 enhances fear extinction in a fear-potentiated startle (FPS) paradigm. In this follow-up study, we utilized an in situ hybridization histochemistry technique to investigate Crh , Crhr1 , and Crhr2 mRNA expression in the CeA, BNST, and PVN of the same rats from the original study [Fox et al., 2017, Brain, Behavior, and Immunity, 66: 70–84]. Here, we demonstrate that preimmunization with M. vaccae NCTC 11659 decreases Crh mRNA expression in the CeA and BNST of rats exposed to the FPS paradigm, and, further, that Crh mRNA expression in these regions is correlated with fear behavior during extinction training. These data are consistent with the hypothesis that M. vaccae promotes stress-resilience by attenuating Crh production in fear- and anxiety-related circuits. These data suggest that immunization with M. vaccae may be an effective strategy for prevention of fear- and anxiety-related disorders.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
104
References
11
Citations
NaN
KQI