Mechanical and Biological Biocompatibilityof Novel β-Type Ti-Mn Alloys for Biomedical Applications

2014 
Mechanical biocompatibility, including tensile properties and Young’s modulus, of -type Ti-Mn alloys,namely, Ti-10Mn and Ti-14Mn, fabricated by the metal injection molding method were investigated. Thebone formability (biological biocompatibility) of a Ti-Mn alloy, namely, Ti-12Mn, fabricated by thearc-melting method was evaluated by means of an animal test. The tensile strength of sintered Ti-10Mn andTi-14Mn achieve a maximum value of 860 and 886 MPa, respectively. The Ti-14Mn specimen sintered at1273 K shows the lowest Young’s modulus (76 GPa) among all sintered Ti-10Mn and Ti-14Mn specimens.The tensile strength of Ti-Mn alloys is almost equal to that of Ti64 ELI; further, their Young’s modulus islower than that of Ti-6Al-4V ELI. The relative bone contact ratio of Ti-12Mn increases from 11% to 29%with increasing implantation time from 12 weeks to 52 weeks. Moreover, the relative bone contact ratio ofTi-12Mn and CP-Ti is almost constant for all implantation times.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    9
    References
    2
    Citations
    NaN
    KQI
    []