High-resolution subsurface microscopy of CMOS integrated circuits using radially polarized light

2015 
Under high numerical aperture (NA) conditions, a linearly polarized plane wave focuses to a spot that is extended along the E-field vector, but radially polarized light is predicted to form a circular spot whose diameter equals the narrower dimension obtained with linear polarization. This effect provides an opportunity for improved resolution in high-NA microscopy, and here we present a performance study of subsurface two-photon optical-beam-induced current solid-immersion-lens microscopy of a complementary metal-oxide semiconductor integrated circuit, showing a resolution improvement by using radially polarized illumination. By comparing images of the same structural features we show that radial polarization achieves a resolution of 126 nm, while linear polarization achieves resolutions of 122 and 165 nm, depending on the E-field orientation. These results are consistent with the theoretically expected behavior and are supported by high-resolution images which show superior feature definition using radial polarization.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    7
    Citations
    NaN
    KQI
    []