Synthetic Lethality Induced by Loss of PKC δ and Mutated Ras

2010 
Synthetic lethal interaction between oncogenic Ha-ras and loss of PKC has been demonstrated. Recently, the authors reported that the concurrent knockdown of PKC α and β, via upregulating PKC δ, sensitizes cells with aberrant Ras signaling to apoptosis. As a continuation of the study, using shRNA, the authors demonstrate that loss of PKC δ causes a lethal reaction in NIH3T3/Hras or prostate cancer DU145 cells that overexpress JNK. In this apoptotic process, PKC α and β are upregulated and then associated with RACK1 (an adaptor for activated PKC) and JNK. Immunoblotting analysis shows that JNK is phosphorylated, accompanied with caspase 8 cleavage. The inhibition of JNK abrogates this apoptotic process triggered by PKC δ knockdown. Interestingly, without blocking PKC δ, the concurrent overexpression of wt- or CAT-PKC α and β is insufficient to induce apoptosis in the cells. Together with the authors’ previous findings, the data suggest that PKC α/β and δ function oppositely to maintain a balance that supports cells expressing v-ras to survive and prevents them from being eliminated through oncogenic stress-induced apoptosis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    10
    Citations
    NaN
    KQI
    []