Clams after storms: the impact of multiple disturbances on seep vesicomyid clams revealed by long-term monitoring

2019 
Cabled seafloor platforms can overcome many constraints of stand-alone systems and archived long-term seafloor monitoring, and their advantages include unlimited power, real-time communication, a synchronized clock, and virtually unlimited data storage. Using monthly images from a fixed camera on a cabled deep-sea observatory in the Off Hatsushima seep site in Sagami Bay, Japan, fluctuations in clam density (Phreagena soyoae and P. okutanii) were observed over 5 years, March 1994–July 1999. Eight disturbances were seen, including five phytodetritus deposition events associated with seasonal blooms, two earthquake-associated turbid flows, and one caused by a maintenance visit by a remotely operated vehicle. Overall, these observations indicate that the vesicomyids experienced an ongoing decline throughout the observation series, and strong disturbance events such as earthquakes appeared to be too severe for the clams to survive. As such, vesicomyid clams are unlikely to survive the foreseeable impacts of deep-sea mining. These results show that long-term observations of deep-sea chemosynthetic communities are useful for understanding their resilience and for making an environmental impact assessment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    3
    Citations
    NaN
    KQI
    []