Kinetochore proteins suppress neuronal microtubule dynamics and promote dendrite regeneration.
2020
Kinetochores connect centromeric chromatin to spindle microtubules during mitosis. Neurons are post-mitotic, so it was surprising to identify transcripts of structural kinetochore (KT) proteins and regulatory chromosome passenger complex (CPC) and spindle assembly checkpoint (SAC) proteins in Drosophila neurons after dendrite injury. To test whether these proteins function during dendrite regeneration, post-mitotic RNAi was performed and dendrites or axons were removed using laser microsurgery. Reduction of KT, CPC and SAC proteins decreased dendrite regeneration without affecting axon regeneration. To understand whether neuronal functions of these proteins rely on microtubules, we analyzed microtubule behavior in uninjured neurons. The number of growing plus, but not minus, ends increased in dendrites with reduced KT, CPC and SAC proteins, while axonal microtubules were unaffected. Increased dendritic microtubule dynamics was independent of DLK-mediated stress, but was rescued by concurrent reduction of γTubulin, the core microtubule nucleation protein. Reduction of γTubulin also rescued dendrite regeneration in backgrounds containing kinetochore RNAi transgenes. We conclude that kinetochore proteins function post-mitotically in neurons to suppress dendritic microtubule dynamics by inhibiting nucleation. [Media: see text] [Media: see text].
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
69
References
7
Citations
NaN
KQI