Phonon Speed, Not Scattering, Differentiates Thermal Transport in Lead Halide Perovskites

2017 
Thermal management plays a critical role in the design of solid state materials for energy conversion. Lead halide perovskites have emerged as promising candidates for photovoltaic, thermoelectric, and optoelectronic applications, but their thermal properties are still poorly understood. Here, we report on the thermal conductivity, elastic modulus, and sound speed of a series of lead halide perovskites MAPbX3 (X = Cl, Br, I), CsPbBr3, and FAPbBr3 (MA = methylammonium, FA = formamidinium). Using frequency domain thermoreflectance, we find that the room temperature thermal conductivities of single crystal lead halide perovskites range from 0.34 to 0.73 W/m·K and scale with sound speed. These results indicate that regardless of composition, thermal transport arises from acoustic phonons having similar mean free path distributions. A modified Callaway model with Born von Karmen-based acoustic phonon dispersion predicts that at least ∼70% of thermal conductivity results from phonons having mean free paths shor...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    66
    Citations
    NaN
    KQI
    []