Adaptive Finite Element Method of Lines with Local Mesh Refinement in Maximum Norm Based on Element Energy Projection Method

2019 
The reliable and efficient self-adaptive analysis is a modern goal of various numerical computations. Most adaptivity methods, however, adopt energy norm to measure errors, which may not be the most natural and convenient means, e.g., for problems with locally singular gradient of displacement. Based on the Element Energy Projection (EEP) super-convergent technique in the Finite Element Method of Lines (FEMOL) which is a general and powerful semi-discrete method, reliable error estimates of displacements in maximum norm can be obtained anywhere on the FEMOL mesh and hence adaptive FEMOL by maximum norm becomes feasible. However, to tackle singularity problems effectively and efficiently, an automatic and flexible local mesh refinement strategy is required to generate meshes of high quality for more efficient adaptive FEMOL analysis. Taking the two-dimensional Poisson equation as the model problem, the paper firstly introduces the FEMOL and EEP methods with interface sides resulting from local mesh refinem...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    0
    Citations
    NaN
    KQI
    []