Incompressible smoothed particle hydrodynamics simulation of natural convection in a nanofluid-filled complex wavy porous cavity with inner solid particles

2020 
Abstract This study focus on the simulation of the natural convection of a nanofluid in a wavy cavity saturated with a partially layered non-Darcy porous medium. The motion of the embedded solid particles, which carry two different isothermal conditions inside a wavy cavity, was considered. The meshfree nature of incompressible smoothed particle hydrodynamics (ISPH) method helped us to simulate the motion of solid particles inside a wavy cavity. The dummy wall boundary particles with enough layers were used to prevent the particle penetrations during simulation of natural convection. The wavy cavity is filled with a nanofluid and a non-Darcy porous medium is embedded in the upper half of the wavy cavity. The results from the current investigation showed that, the motion of the inserted solid particles affects strongly on the strength of the fluid flows and heat transfer inside a wavy cavity. The position and isothermal condition of the inner solid particles try to change the distributions of temperature and fluid flow inside a wavy cavity. Average Nusselt number has higher values in the case of cool solid particles compare to hot solid particles. At the current model, an addition of nanoparticles has slight effects on enhancement heat transfer inside a wavy cavity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    64
    References
    44
    Citations
    NaN
    KQI
    []