Environmental photochemistry in Solanum trilobatum mediated plasmonic nanoparticles as a probe for the detection of Cd2+ ions in water.

2021 
Abstract Nowadays world deals with a lot of environmental troubles out of which water pollution is very dangerous. Water gets contaminated by heavy metal ions is a universal problem which needs suitable consideration to keep up the quality of the water. It will be advantageous that an easy device can be detecting the concentration of heavy metal ions in water. Here, a contaminant, cadmium from industrial affluent into water is considered and focused. Gold nanoparticles (AuNPs) have been synthesized by Solanum trilobatum leaf extract and its applications of antifungal and sensing activity was reported here. The influences of different concentration of these reducing agent on the synthesis of AuNPs (G5 and G10) have been evaluated. The structural, optical, vibrational, morphological and compositional properties of the AuNPs were studied through XRD, UV–vis spectra, FTIR, HRTEM and EDAX analysis. The optical studies showed surface plasmon absorbance peak at 526 nm. It shows that the absorbance of the peak becomes narrow with a higher concentration of leaf extract. XRD results showed the average size of the AuNPs was 8 nm. It also confirmed the high crystallinity of nanoparticles. FTIR exposes that amine and carboxyl groups may be involved in the stabilization and reduction mechanism. TEM pictures of both G10 and G5 demonstrate merely spherical nanoparticles. This morphology control is taken place owing to the adsorbed amine and carboxyl groups onto the gold nanoparticles cap the particles and improve the stability. The presence of gold elements in the sample was identified with the help of EDAX. The sensitivity of the system towards various Cd2+ concentrations was measured as 0.058/mM for G5 and 0.095/mM for G10. The prepared nanoparticles produced highest zone of inhibition (ZOI) of 17.5 mm and 19 mm against human being pathogenic fungi Aspergillus Flavus and Candida albicans respectively. Here, small sized spherical nanoparticles showed good antifungal activity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    0
    Citations
    NaN
    KQI
    []