Nanomechanical resonators based on adiabatic periodicity-breaking in a superlattice

2017 
We propose a nanocavity design which is able to confine acoustic phonons by adiabatically changing the thicknesses of a GaAs/AlAs superlattice. By means of high resolution Raman scattering, we experimentally demonstrate the presence of a confined acoustic mode around 350 GHz. We observe an excellent agreement between the experimental data and numerical simulations based on a photoelastic model. We demonstrate that the spatial profile of the confined mode can be tuned by changing the magnitude of the adiabatic deformation, leading to strong variations of its mechanical quality factor and Raman scattering cross-section. The reported design could significantly improve the acoustic confinement properties of nanophononic and optomechanical devices.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    6
    Citations
    NaN
    KQI
    []