Spatial control and cell adhesion selectivity on model gold surfaces grafted with elastin-like recombinamers

2018 
Abstract A simple system for cell selectivity and spatially controlled cell adhesion has been developed using model gold surfaces grafted with a combination of two ELRs containing into their backbone cell-adhesion domains such as RGD and REDV. Grafting onto gold was achieved via redox reaction through thiol groups present in amino terminal cysteine tails of the ELRs. The correlation among contact angle, SEM micrographs, AFM, XPS and QCM-D have been carried out. After in-depth adhesion studies, a mixture of 75% ELR-REDV and 25% ELR-RGD was found to exhibit high selectivity for endothelial cells, promoting strong adhesion thereof. Consequently, certain areas of gold surfaces (strips) were cleaned by laser ablation and functionalized with the mixture 75% ELR-REDV – 25% ELR-RGD leading to a spatial segregation of the co-culture made of HUVEC and HFF1 cells. This platform therefore exhibits selective spatial control over cell adhesion associated with the bioactive epitopes (RGD and REDV) contained in the ELR sequence, since each functionalized surface (including strips) have similar topographic and hydrophobic characteristics and mechanical properties are in the same order of magnitude.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    6
    Citations
    NaN
    KQI
    []