Electrospun ceramic nanofibers as 1D solid electrolytes for lithium batteries
2019
Abstract All-solid-state lithium batteries (ASSLBs) are undoubtedly among the most promising technologies to replace conventional lithium-ion batteries. Their key component is a thin solid-state electrolyte, which is safer than its flammable liquid counterpart and enables the use of metallic lithium, thus ensuring high energy densities (over 500 W h kg −1 ). Several solid electrolytes are currently being investigated, such as NASICON-like materials, perovskites, and garnets. Typical techniques used to synthesize most such electrolytes still involve prolonged high-temperature calcination and sintering steps. An alternative approach is to couple electrospinning with the well-known sol–gel method to lower the temperatures and synthesis times and simultaneously exploit the benefits of using anisotropic nanostructured materials. In this review, we discuss advances in the synthesis of ceramic nanofibrous materials having high ionic conductivity and present our perspective regarding their potential application as electrolytes in ASSLBs.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
54
References
26
Citations
NaN
KQI