Spin and orbital properties of perpendicular magnetic anisotropy for spin-orbit torque material devices

2021 
Abstract Computer engineers have been attempting to incorporate spin-based devices in future computer architectures, such as processing-in-memory (PIM) in artificial intelligence systems. A successful PIM requires ongoing efforts for developing fast and low-power spintronic material devices. The spin-orbit torque (SOT) device, which is associated with perpendicular magnetic anisotropy (PMA) materials, is a promising candidate. Herein, macroscopic and nanoscopic studies on the spin-orbit interaction of two distinct SOT-PMA systems are conducted to enhance our understanding of the interfacial PMA and pave the way of material design for reliable and high-performance spin memory and logic devices. The experimental results indicate that further theoretical studies are needed to establish a sophisticated explanation instead of the conventional hybridization for the interfacial PMA. In addition, an interesting phenomenon, which can be a useful ingredient while applying thermal energy barrier, concerning the integration of reliable spin devices in future commercial computer systems is reported.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    1
    Citations
    NaN
    KQI
    []