The influence of elevated 50 Hz electric and magnetic fields on implanted cardiac pacemakers: the role of the lead configuration and programming of the sensitivity.

1991 
The influence of the electromagnetic interference (EMI) on performance of 15 implanted cardiac pacemakers (12 generator models) was tested during exposure at a high voltage substation. All patients had an adequate spontaneous heart rate during the study. Tests were performed in the ventricular inhibited mode with unipolar sensing in all pacemakers and repeated with bipolar sensing in four pacemakers. The sensitivity was set to a regular, functionally proper level and then to the highest available level. Exposure was done to moderate (1.2-1.7 kV/m) and strong (7.0-8.0 kV/m) electric fields, which correspond to the immediate vicinity of 110 and 400 kV power lines, respectively. In moderate electric fields the output was inhibited in one pacemaker at regular sensitivity (1.7-3.0 mV) and in five pacemakers at the highest sensitivity (0.5-1.25 mV). In strong electric fields the output was inhibited in five pacemakers at regular sensitivity and several pacemakers converted to noise reversion mode at the highest sensitivity. In bipolar mode only one of four pacemakers at high sensitivity (0.5-1.0 mV) was inhibited in the strongest electric field, whereas all four did so in the unipolar mode. One pacemaker with unipolar sensitivity at 0.5 mV was interfered by 63 microT magnetic field. The results confirm that the programmed sensitivity level and the lead configuration markedly influence pacemakers' vulnerability to EMI. Bipolar sensing mode is rather safe in the presence of EMI, which is encountered in public environments. The programmable features of today's pacemakers permit individualized, less stringent safety measures to avoid electromagnetic hazards.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    11
    References
    73
    Citations
    NaN
    KQI
    []