Integration of hydrogenation and dehydrogenation based on dibenzyltoluene as liquid organic hydrogen energy carrier

2019 
Abstract The heat transfer oil dibenzyltoluene (DBT) offered an intriguing approach for the scattered storage of renewable excess energy as a novel Liquid Organic Hydrogen Carrier (LOHC). The integration of hydrogenation and dehydrogenation in H0-DBT/H18-DBT pairs demonstrated that the feasibility of hydrogenation and dehydrogenation reaction conducted in one reactor with the same catalyst, which would be proposed to simplify the hydrogen storage process. The optimal reaction temperature based on the inhibition of ring opening and cracking was investigated combined with the 1 H NMR analysis. Meanwhile, the ideal catalyst 3 wt% Pt/Al 2 O 3 for high hydrogen storage efficiency was screened out. Cycle tests of hydrogenation and dehydrogenation integration reaction had shown that the hydrogen storage efficiency was 84.6% after five cycle tests. The integration of hydrogenation and dehydrogenation reaction based on DBT exhibited the ideal thermal stability, which demonstrated its potential as a reversible H 2 carrier.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    39
    Citations
    NaN
    KQI
    []