Transport of branched-chain amino acids in membrane vesicles of Streptococcus cremoris.

1987 
The kinetics, specificity, and mechanism of branched-chain amino acid transport in Streptococcus cremoris were studied in a membrane system of S. cremoris in which beef heart mitochondrial cytochrome c oxidase was incorporated as a proton motive force (Δp)-generating system. Influx of L-leucine, L-isoleucine, and L-valine can occur via a common transport system which is highly selective for the L-isomers of branched chain amino acids and analogs. The pH dependency of the kinetic constants of Δp-driven L-leucine transport and exchange (counterflow) was determined. The maximal rate of Δp-driven transport of L-leucine (Vmax) increased with increasing internal pH, whereas the affinity constant increased with increasing external pH. The affinity constant for exchange (counterflow) varied in a similar fashion with pH, whereas Vmax was pH independent. Further analysis of the pH dependency of various modes of facilitated diffusion, i.e., efflux, exchange, influx, and counterflow, suggests that H+ and L-leucine binding and release to and from the carrier proceed by an ordered mechanism. A kinetic scheme of the translocation cycle of H+-L-leucine cotransport is suggested.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    58
    Citations
    NaN
    KQI
    []