Temperature Dependence of Ion Transport in Dilute Tetrabutylammonium Triflate-Acetate Solutions and Self-Diffusion in Pure Acetate Liquids

2012 
Conductivities and static dielectric constants for 0.0055 M tetrabutylammonium trifluoromethanesulfonate in n-butyl acetate, n-pentyl acetate, n-hexyl acetate, n-octyl acetate, and n-decyl acetate have been collected over the temperature range of 0–80 °C. Self-diffusion coefficients and static dielectric constants of pure acetates were obtained over the same temperature range. Both temperature-dependent diffusion coefficients and ionic conductivities of these pure acetates and dilute acetate solutions can be accurately described by the compensated Arrhenius formalism. Activation energies were calculated from compensated Arrhenius plots for both conductivity and diffusion data. Activation energies are higher for conductivity data of 0.0055 M TbaTf-acetates compared to diffusion data of pure acetates. The plot of the exponential prefactor versus the dielectric constant yields a single master curve for both conductivity and diffusion data. These data support the argument that mass and charge transport are th...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    12
    Citations
    NaN
    KQI
    []