Phloretin attenuates behavior deficits and neuroinflammatory response in MPTP induced Parkinson's disease in mice

2019 
Abstract Neuroinflammation is one of the significant neuropathological conditions in Parkinson's disease (PD) which is due to microglial and astrocytes activation leads to progressive dopaminergic neuronal loss. To date, Current PD drugs offers only symptomatic relief with adverse effects and lack of ability to prevent the progression of neurodegeneration. Therefore, a better approach to develop a multi potent drug of natural origin would be beneficial in managing the disease. Therefore, the present study aimed to investigate the neuroprotective and anti-inflammatory effects of PHL by exploring its neuroprotective mechanism in 1-methyl-4-phenyl-1,2,3,6-tetrahydro pyridine (MPTP) induced PD in mice. MPTP intoxication in mice cause motor abnormalities, decreased dopamine (DA) levels, reduced tyrosine hydroxylase (TH) enzyme protein expression and inflammation which were effectively restored by PHL. Moreover gliotic specific inflammatory markers like glial fibrillary acidic protein (GFAP), ionized calcium-binding adaptor protein-1 (Iba-1), iNOS and COX-2 were found to be expressed more in MPTP intoxicated mice, Further the levels of proinflammatory cytokines like IL-β, IL-6, and TNF-α were significantly upregulated in MPTP intoxicated mice, these deleterious responses were diminished to extend neuroprotection by PHL treatment. Our findings strongly suggest PHL as a potent therapeutic agent in treating PD.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    6
    Citations
    NaN
    KQI
    []