Formation of active radicals and mechanism of photocatalytic degradation of phenol process using eosin sensitized TiO2 under visible light irradiation

2013 
The role of oxygen and the generation of active radicals in the photocatalitic degradation of phenol were investigated using the eosin sensitized TiO2 as photocatalyst under visible light irradiation. Diffuse reflectance spectra show that the absorbancy range of eosin/TiO2 is expanded from 378 nm (TiO2) to about 600 nm. The photocatalitic degradation of phenol is almost stopped when the eosin/TiO2 system is saturated with N2, which indicates the significance of O2. The addition of NaN3 (a quencher of single oxygen) causes about a 62% decrease in the phenol degradation. The phenol degradation ratio is dropped from 92% to 75% when the isopropanol (a quencher of hydroxyl radical) is present in the system. The experimental results show that there are singlet oxygen and hydroxyl radical generated in the eosin/TiO2 system under visible light irradiation. The changes of absorbancy indicate that the hydrogen peroxide might be produced. Through the analysis and comparison, it is found that the singlet oxygen is the predominant active radical for the degradation of phenol.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    1
    Citations
    NaN
    KQI
    []