An Ontology-based approach to Knowledge-assisted Integration and Visualization of Urban Mobility Data
2020
Abstract This paper proposes an ontology-based framework to support integration and visualization of data from Intelligent Transportation Systems. These activities may be technically demanding for transportation stakeholders, due to technical and human factors, and may hinder the use of visualization tools in practice. The existing ontologies do not provide the necessary semantics for integration of spatio-temporal data from such systems. Moreover, a formal representation of the components of visualization techniques and expert knowledge can leverage the development of visualization tools that facilitate data analysis. The proposed Visualization-oriented Urban Mobility Ontology (VUMO) provides a semantic foundation to knowledge-assisted visualization tools (KVTs). VUMO contains three facets that interrelate the characteristics of spatio-temporal mobility data, visualization techniques and expert knowledge. A built-in rule set leverages semantic technologies standards to infer which visualization techniques are compatible with analytical tasks, and to discover implicit relationships within integrated data. The annotation of expert knowledge encodes qualitative and quantitative feedback from domain experts that can be exploited by recommendation methods to automate part of the visualization workflow. Data from the city of Porto, Portugal were used to demonstrate practical applications of the ontology for each facet. As a foundational domain ontology, VUMO can be extended to meet the distinctiveness of a KVT.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
27
References
13
Citations
NaN
KQI