Microcrystal preparation for serial femtosecond X-ray crystallography of bacterial copper amine oxidase.

2021 
Recent advances in serial femtosecond X-ray crystallography (SFX) using X-ray free-electron lasers have paved the way for determining radiation-damage-free protein structures under nonfreezing conditions. However, the large-scale preparation of high-quality microcrystals of uniform size is a prerequisite for SFX, and this has been a barrier to its widespread application. Here, a convenient method for preparing high-quality microcrystals of a bacterial quinoprotein enzyme, copper amine oxidase from Arthrobacter globiformis, is reported. The method consists of the mechanical crushing of large crystals (5-15 mm3), seeding the crushed crystals into the enzyme solution and standing for 1 h at an ambient temperature of ∼26°C, leading to the rapid formation of microcrystals with a uniform size of 3-5 µm. The microcrystals diffracted X-rays to a resolution beyond 2.0 A in SFX measurements at the SPring-8 Angstrom Compact Free Electron Laser facility. The damage-free structure determined at 2.2 A resolution was essentially identical to that determined previously by cryogenic crystallography using synchrotron X-ray radiation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    0
    Citations
    NaN
    KQI
    []