Levitation Diffusion Chamber Measurements of the Mass Growth of Small Ice Crystals from Vapor

2016 
AbstractA levitation diffusion chamber designed to examine the mass growth from the vapor of small ice particles (diameter < 100 μm) at ambient pressure (≃970 hPa) and low temperature (T < −30°C) is presented. The diffusion chamber is unique in that charged ice particles are levitated by an opposing voltage on the lower copper plate with lateral stability provided by button quadrupole electrodes attached to the upper copper plate. The button electrodes are far from the ice particle growth region, allowing ice particles to grow free of substrate influences. Experiments have been conducted for temperatures from −30° to −35.7°C, ice supersaturations from 2.5% to 28.6%, and over growth times ranging from 5 to 15 min. The experiments indicate that mass varies nonlinearly in time and exhibits a dependence on initial particle radius and ice supersaturation in accord with expectations from theory. In contrast to expectations from spherical capacitance theory, the derived mass growth rates do not scale linearly wi...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    4
    Citations
    NaN
    KQI
    []