Isocyanate- and Phosgene-Free Routes to Polyfunctional Cyclic Carbonates and Green Polyurethanes by Fixation of Carbon Dioxide

2014 
The catalytic chemical fixation of carbon dioxide by carbonation of oxiranes, oxetanes, and polyols represents a very versatile green chemistry route to environmentally benign di- and polyfunctional cyclic carbonates as intermediates for the formation of non-isocyanate poly­urethane (NIPU). Two synthetic pathways lead to NIPU thermoplastics and thermosets: i) polycondensation of diacarbamates or acyclic dicarbonates with diols or diamines, respectively, and ii) polyaddition by ring-opening polymerization of di- and polyfunctional cyclic carbonates with di- and polyamines. The absence of hazardous and highly moisture-sensitive isocyanates as intermediates eliminates the need for special safety precautions, drying and handling procedures. Incorporated into polymer backbones and side chains, carbonate groups enable facile tailoring of a great variety of urethane-functional polymers. As compared with conventional polyurethanes, ring-opening polymerization of polyfunctional cyclic carbonates affords polyhydroxyurethanes with unconventional architectures including NIPUs containing carbohydrate segments. NIPU/epoxy hybrid coatings can be applied on wet surfaces and exhibit improved adhesion, thermal stability and wear resistance. Combining chemical with biological carbon dioxide fixation affords 100% bio-based NIPUs derived from plant oils, terpenes, carbohydrates, and bio polyols. Biocompatible and biodegradable NIPU as well as NIPU biocomposites hold great promise for biomedical applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    102
    References
    197
    Citations
    NaN
    KQI
    []