Population collapse in viviparid gastropods of the Lake Victoria ecoregion started before the Last Glacial Maximum

2020 
Ecosystems of Lake Victoria and riparian communities have been strongly disrupted by the introduction of the invasive Nile perch and its fishing industry. Beyond this invasion and other recent anthropogenic stressors, the Lake Victoria ecoregion also underwent phases of pronounced aridity over the Late Pleistocene, lastly during the Last Glacial Maximum (LGM). The consequences of recent and historic environmental change have been canvassed for the adaptive radiation of haplochromine cichlids occupying the ecoregion, but their effect on freshwater invertebrate diversity remains largely unknown. Here, we use 15 microsatellite loci and approximate Bayesian computation to test whether viviparid gastropods experienced a population bottleneck during the LGM, as did cichlids. Clustering analyses support three viviparid gene pools in the Lake Victoria ecoregion, gathering specimens from 1) Lake Albert and the White Nile, 2) the Victoria Nile and Lake Kyoga and 3) Lake Victoria and tributaries. The last group contains the highest genetic diversity, but all groups have a considerable number of private alleles and are inferred to predate the LGM. Examinations of demographic history reveal a 190- to 500-fold population decline that started ~ 125-150 ka ago, thus substantially before the LGM bottleneck documented in haplochromine cichlids. Population collapses in viviparids are an order of magnitude more severe than declines in cichlids and have not been halted by the re-establishment of freshwater ecosystems since the LGM. Recent anthropogenic ecosystem deterioration is causing homogenization of previously diversified microhabitats, which may contribute to (local) extinction and enhanced gene flow among species within gene pools.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    65
    References
    2
    Citations
    NaN
    KQI
    []