Detecting Sunyaev-Zel'dovich clusters with PLANCK: II. Foreground components and optimised filtering schemes

2004 
The PLANCK mission is the most sensitive all-sky CMB experiment currently planned. The High Frequency Instrument (HFI) will be especially suited for observing clusters of galaxies by their thermal Sunyaev-Zel'dovich (SZ) effect. In order to assess PLANCKs SZ-capabilities in the presence of spurious signals, a simulation is presented that combines maps of the thermal and kinetic SZ-effects with a realisation of the cosmic microwave background (CMB), in addition to Galactic foregrounds (synchrotron emission, free-free emission, thermal emission from dust, CO-line radiation) as well as the sub-millimetric emission from celestial bodies of our Solar system. Additionally, observational issues such as the finite angular resolution and spatially non-uniform instrumental noise of PLANCKs sky maps are taken into account, yielding a set of all-sky flux maps, the auto-correlation and cross-correlation properties of which are examined in detail. In the second part of the paper, filtering schemes based on scale-adaptive and matched filtering are extended to spherical data sets, that enable the amplification of the weak SZ-signal in the presence of all contaminations stated above. The theory of scale-adaptive and matched filtering in the framework of spherical maps is developed, the resulting filter kernel shapes are discussed and their functionality is verified.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    40
    Citations
    NaN
    KQI
    []