Experimental fault-tolerant quantum cryptography in a decoherence-free subspace

2006 
We experimentally implement a fault-tolerant quantum key distribution protocol with two photons in a decoherence-free subspace [Phys. Rev. A 72, 050304(R) (2005)]. It is demonstrated that our protocol can yield a good key rate even with a large bit-flip error rate caused by collective rotation, while the usual realization of the Bennett-Brassard 1984 protocol cannot produce any secure final key given the same channel. Since the experiment is performed in polarization space and does not need the calibration of a reference frame, important applications in free-space quantum communication are expected. Moreover, our method can also be used to robustly transmit an arbitrary two-level quantum state in a type of decoherence-free subspace.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    1
    References
    31
    Citations
    NaN
    KQI
    []