Oral pyruvate prevents glaucomatous neurodegeneration

2020 
Intraocular pressure-sensitive retinal ganglion cell degeneration is a hallmark of glaucoma, the leading cause of irreversible blindness. Converging evidence indicates that age-related bioenergetic insufficiency increases the vulnerability of retinal ganglion cells to intraocular pressure. To investigate further, we used metabolomics and RNA-sequencing to examine early glaucoma in DBA/2J mice. We demonstrate an intraocular pressure-dependent decline in retinal pyruvate levels coupled to dysregulated glucose metabolism prior to detectable optic nerve degeneration. Oral supplementation of pyruvate strongly protected from neurodegeneration in pre-clinical models of glaucoma. We detected mTOR activation at the mechanistic nexus of neurodegeneration and metabolism. Rapamycin-induced inhibition of mTOR robustly prevented glaucomatous neurodegeneration. Bioenergetic enhancement, in combination with intraocular pressure reduction, therefore provides a readily translatable strategy that warrants investigation in clinical trials.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    2
    Citations
    NaN
    KQI
    []