Geometrical structures, vibrational frequencies, force constants and dissociation energies of isotopic water molecules (H2O, HDO, D2O, HTO, DTO, and T2O) under dipole electric field

2011 
The dissociation limits of isotopic water molecules are derived for the ground state. The equilibrium geometries, the vibrational frequencies, the force constants and the dissociation energies for the ground states of all isotopic water molecules under the dipole electric fields from ?0.05 a.u. to 0.05 a.u. are calculated using B3P86/6-311++G(3df,3pf). The results show that when the dipole electric fields change from ?0.05 a.u. to 0.05 a.u., the bond length of H?O increases whereas the bond angle of H?O?H decreases because of the charge transfer induced by the applied dipole electric field. The vibrational frequencies and the force constants of isotopic water molecules change under the influence of the strong external torque. The dissociation energies increase when the dipole electric fields change from ?0.05 a.u. to 0.05 a.u. and the increased dissociation energies are in the order of H2O, HDO, HTO, D2O, DTO, and T2O under the same external electric fields.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    7
    Citations
    NaN
    KQI
    []