Amino-functionalized NH2-MIL-125(Ti)-decorated hierarchical flowerlike Znln2S4 for boosted visible-light photocatalytic degradation.

2021 
Abstract: Developing novel heterojunction photocatalysts with visible-light response and remarkable photocatalytic activity have been verified to applying for the photodegradation of antibiotics in water environment. Herein, NH2-MIL-125(Ti) was integrated with flowerlike ZnIn2S4 to construct NH2-MIL-125(Ti)@ZnIn2S4 heterostructure using a one-pot solvothermal method. The photocatalytic performance was evaluated by the degradation of tetracycline (TC) under visible light illumination. The optimized NM(2%)@ZIS possesses a photodegradation rate (92.8%) and TOC removal efficiency (58.5%) superior to pristine components, which can be principally attributed to the positive cooperative effects of well-matched energy level positions, strong visible-light-harvesting capacity, and abundant coupling interfaces between the two. Moreover, the probable TC degradation mechanism was also clarified using the active species trapping experiments. This study inspires further design and construction of NH2-MIL-125(Ti) and ZnIn2S4 based photocatalysts for effective removal of antibiotics in water environment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    0
    Citations
    NaN
    KQI
    []